

e3-testsuite: User’s Manual

e3-testsuite is a Python library built on top of e3-core. Its purpose
it to provide building blocks for software projects to create testsuites in a
simple way. This library is generic: for instance, the tested software does not
need to use Python.

Note that this manual assumes that readers are familiar with the Python
language (Python3, to be specific) and how to run scripts using its standard
interpreter CPython.

Installation

e3-testsuite is available on Pypi, so installing it is as simple as
running:

pip install e3-testsuite

How to read this documentation

The Core concepts and Tutorial sections are must read: the former
introduces notions required to understand most of the documentation and the
latter put them in practice, as a step-by-step guide to write a simple, but
real world testsuite.

From there, brave/curious readers can go on until the end of the documentation,
while readers with time/energy constraints can just go over the sections of
interest for their needs.

Topics

	Core concepts
	Testsuite organization

	Test results

	Test drivers

	Tutorial
	Basic setup

	Creating a test driver

	Writing tests

	Commonly used testsuite arguments

	Test execution control

	e3.testsuite.result: Create test results
	TestResult

	TestStatus

	Log

	FailureReason

	e3.testsuite.driver: Core test driver API
	Basic API

	Test/working directories

	Test fragments

	Creating test drivers

	Test fragment abortion

	Test fragment slot

	Inter-test dependencies

	e3.testsuite.driver.classic: Common test driver facilities
	Working directory management

	Output encodings

	Spawning subprocesses

	Set up/analyze/tear down

	Metadata-based execution control

	Exception-based execution control

	Colors

	Test fragment slot

	e3.testsuite.driver.diff: Test driver for actual/expected outputs
	Basic API

	Output encodings

	Handling output variations

	Alternative baselines

	Automatic baseline rewriting

	e3.testsuite.control: Control test execution
	Basic API

	YAMLTestControlCreator

	e3.testsuite: Testsuite API
	Test drivers

	Testsuite environment

	Command-line options

	Set up/tear down

	Overriding tests subdirectory

	Changing the testcase naming scheme

	e3.testsuite.testcase_finder: Control testcase discovery
	The special case of directories with multiple tests

	Compatibility for AdaCore’s legacy testsuites
	Test finder

	Test control

	Test driver

	Multiprocessing: leveraging many cores
	Limitations

	Enabling multiprocessing

	Advanced control of multiprocessing

Indices and tables

	Index

	Module Index

	Search Page

Core concepts

Testsuite organization

All testsuites based on e3-testsuite have the same organization. On one
side, a set of Python scripts use classes from the e3.testsuite package
tree to implement a testsuite framework, and provide an entry point to launch
the testsuite. On the other side, a set of testcases will be run by the
testsuite.

By default, the testsuite framework assumes that every testcase is materialized
as a directory that contains a test.yaml file, and that all testcases can
be arbitrarily organized in a directory tree. However, this is just a default:
the testcase format is completely customizeable.

Test results

During execution, each testcase can produce one or several test results. A
test result contains a mandatory status (PASS, FAIL, XFAIL, …) to determine
if the test succeeded, failed, was skipped, failed in an expected way, etc. It
can also contain optional metadata to provide details about the testcase
execution: output, logs, timing information, and so on.

Test drivers

It is very common for testsuites to have lots of very similar testcases. For
instance, imagine a testsuite to validate a compiler:

	Some testcases will do unit testing: they build and execute special programs
(for instance: unittest.c) which use the compiler as a library, expecting
these program not to crash.

	All other testcases come with a set of source files (say *.foo source
files), on which the compiler will run:

	Some testcases will check the enforcement of language legality rules: they
will run the compiler and check the presence of errors.

	Some testcases will check code generation: they will run the compiler to
produce an executable, then run the executable and check its output.

	Some testcases will check the generation of debug info: they will run the
compiler with special options and then check the produced debug info.

There are two strategies to implement this scheme. One can create a “library”
that contain helpers to run the compiler, extract error messages from the
output, etc. and put in each testcase a script (for instance test.py)
calling these helpers to implement the checking. For “legality rules
enforcement” tests, this could give for instance:

test.py
from support import run_compiler
result = run_compiler("my_unit.foo")
assert result.errors == ["my_unit.foo:2:5: syntax error"]

my_unit.foo
Syntax error ahead:
bar(|

An alternative strategy is to create “test macros” which, once provided
testcase data, run the desired scenario: one macro would take care of unit
testing, another would check legality rules enforcement, etc. This removes the
need for redundant testing code in all testcases.

e3-testsuite uses the latter strategy: “test macros” are called test
drivers, and by default the entry point for a testcase is the test.yaml
file. The above example looks instead like the following:

test.yaml
driver: legality-rules
errors:
 - "my_unit.foo:2:5: syntax error"

my_unit.foo
Syntax error ahead:
bar(|

Note that when testcases are just too different, so that creating one or
several test drivers does not make sense, there is still the option of creating
a “generic” test drivers that only runs a testcase-provided script.

To summarize: think of test drivers as programs that run on testcase data and
produce a test result to describe testcase execution. All testcases need a test
driver to run.

Tutorial

Let’s create a simple testsuite to put Core concepts in practice and
introduce common APIs. The goal of this testsuite will be to write tests for
the bc, the famous POSIX command-line calculator.

Basic setup

First, create an empty directory and put the following Python code in a
testsuite.py file:

#! /usr/bin/env python3

import sys

from e3.testsuite import Testsuite

class BcTestsuite(Testsuite):
 """Testsuite for the bc(1) calculator."""

 pass

if __name__ == "__main__":
 sys.exit(BcTestsuite().testsuite_main())

Just this already makes a functional (but useless) testsuite. Make this file
executable and then run it:

$ chmod +x testsuite.py
$./testsuite.py
INFO Found 0 tests
INFO Summary:
_ <no test result>

That makes sense: we have an empty testsuite, so running it actually executes
no test.

Creating a test driver

Most testcases will check the behavior of artithmetic computations, so we have
an obvious first driver to write: it will spawn a bc process, passing a
file that contains the arithmetic expression to evaluate to it and check that
the output is as expected. Testcases using this driver just need to provide the
expression input file and an expected output file.

Creating a test driver is as simple as creating a Python class that derives
from e3.testsuite.drivers.TestDriver. However, its API is quite crude, so
we will study it later. Let’s use
e3.testsuite.drivers.diff.DiffTestDriver instead: that class conveniently
provides the framework to spawn subprocesses and check their outputs against
baselines, i.e. exactly what we want to do here.

Add the following class to testsuite.py:

from e3.testsuite.driver.diff import DiffTestDriver

class ComputationDriver(DiffTestDriver):
 """Driver to run a computation through "bc" and check its output.

 This passes the "input.bc" to "bc" and check its output against the
 "test.out" baseline file.
 """

 def run(self):
 self.shell(["bc", "input.bc"])

The only mandatory thing to do for ClassicTestDriver concrete subclasses
(DiffTestDriver is an abstract subclass) is to override the run method.
The role of this method is to do whatever actions the test driver is supposed
to do in order for testcases to exercize the tested piece of software: compile
software, prepare input files, run processes, and so on.

The very goal of DiffTestDriver is to compare a “test output” against a
baseline: the test succeeds only if both match. But what’s a test output? It is
up to the DiffTestDriver subclass to define it: for example the output of
one subprocess, the concatenation of several subprocess outputs or the content
of a file that the testcase produces. Subclasses must store this test output in
the self.output attribute, and DiffTestDriver will then compare it
against the baseline, i.e. by default: the content of the test.out file.

Here, the only thing we need to do is to actually run the bc program on our
input file. shell is a method inherited from ClassicTestDriver acting
as a wrapper around Python’s subprocess standard library module. This
wrapper spawns a subprocess with an empty standard input, returns its exit code
and captured output (mix of standard output/error). While the only mandatory
argument is a list of strings for the command-line to run, optional arguments
control how to spawn this subprocess and use its result, for instance:

	cwd controls the working directory for the subprocess. By default, the
subprocess is run in the test working directory.

	env allows to control environment variables passed to the subprocess. By
default: leave the testsuite environment variables unchanged.

	catch_error: whether to consider non-zero exit code as a test failure
(true by default).

	analyze_output: whether to append the subprocess’ output to
self.output (true by default).

Thanks to these defaults, the above call to self.shell will make the test
succeed only if the bc program prints the exact expected output and stops
with exit code 0.

Now that we have a test driver, we can make BcTestsuite aware of it:

class BcTestsuite(Testsuite):
 test_driver_map = {"computation": ComputationDriver}
 default_driver = "computation"

The test_driver_map class attribute maps names to test driver classes. It
allows testcases to refer to the test driver they require using these names
(see the next section). default_driver gives the name of the default test
driver, for testcases that do not specify a specific driver.

With this framework, it is now possible to write actual testcases!

Writing tests

As described in Core concepts, the standard format for testcases is:
any directory that contains a test.yaml file. By default, the testsuite
searches all directories near the Python script file that subclasses
e3.testsuite.Testsuite. In our example, that means all directories near the
testsuite.py file, and all nested directories.

With that in mind, let’s write our first testcase: create an addition
directory next to testsuite.py and fill it with testcase data:

$ mkdir addition
$ cd addition
$ echo "driver: computation" > test.yaml
$ echo "1 + 2" > input.bc
$ echo 3 > test.out

Thanks to the presence of the addition/test.yaml file, the addition/
directory is considered as a testcase. Its content tells the testsuite to run
it using the “computation” test driver: that driver will pick the two other
files as bc’s input and the expected output. In practice:

$./testsuite.py
INFO Found 1 tests
INFO PASS addition
INFO Summary:
_ PASS 1

Note: given that the “compute” test driver is the default one, driver:
computation in the test.yaml file is not necessary. We can show that with
a new testcase (empty test.yaml file):

$ mkdir subtraction
$ cd subtraction
$ touch test.yaml
$ echo "10 - 2" > input.bc
$ echo 8 > test.out
$ cd ..
$./testsuite.py
INFO Found 2 tests
INFO PASS addition
INFO PASS subtraction
INFO Summary:
_ PASS 2

Commonly used testsuite arguments

So far everything worked fine. What happens when there is a test failure? Let’s
create a faulty testcase to find out:

$ mkdir multiplication
$ cd multiplication
$ touch test.yaml
$ echo "2 * 3" > input.bc
$ echo 8 > test.out
$ cd ..
$./testsuite.py
INFO Found 3 tests
INFO PASS subtraction
INFO PASS addition
INFO FAIL multiplication: unexpected output
INFO Summary:
_ PASS 2
_ FAIL 1

Instead of the expected PASS test result, we have a FAIL one with a
message: unexpected output. Even though we can easily guess the error is
that the expected output should be 6 (not 8), let’s ask the testsuite
to show details thanks to the --show-error-output/-E option. We’ll also ask
the testsuite to run only that failing testcase:

$./testsuite.py -E multiplication
INFO Found 1 tests
INFO FAIL multiplication: unexpected output
_--- expected
_+++ output
_@@ -1 +1 @@
_-8
_+6
INFO Summary:
_ FAIL 1

On baseline comparison failure, DiffTestDriver creates a unified diff
between the baseline (--- expected) and the actual output (+++ output)
showing the difference, and the testsuite’s --show-error-output/-E option
displays it, making it easy to quickly spot the difference between the two.

Even though these 3 testcases take very little time to run, most testsuites
require a lot of CPU time to run to completion. Nowadays, most working stations
have several cores, so we can spawn one test per core to speedup testsuite
execution time. e3.testsuite supports the --jobs/-j option to achive
this. This option works the same way it does for the make program: -jN
is the default (run at most N testcases at a time, default is 1), and -j0
tells to set N to the number of CPU cores.

Test execution control

There is no obvious bug in bc that this documentation could expect to
survive for long, so let’s stick with this wrong multiplication testcase
and pretend that bc should return 8. This is a known bug, and so the
failure is expected for the time being. This situation occurs a lot in
software: bugs often take a lot of time to fix, sometimes test failures come
from bugs in upstream projects, etc.

To keep testsuite reports readable/usable, it is convenient to tag failures
that are temporarily accepted as XFAIL rather than FAIL: the former
is a failure that has been analyzed as acceptable for now, leaving the latter
for unexpected regressions to investigate. Testcases using a driver that
inherits from ClassicTestDriver can do that by adding a control entry
in their test.yaml file. To do that, append the following to
multiplication/test.yaml:

control:
- [XFAIL, "True", "erroneous multiplication: see bug #1234"]

When present, control must contain a list of 2- or 3-uplets:

	A command. Here, XFAIL to state that failure is expected: FAIL test
statuses are turned into XFAIL, and PASS are turned into XPASS.
There are two other commands available: NONE (the default: regular test
execution), and SKIP (do not execute the testcase and create a SKIP
test result).

	A Python expression as a condition guard, to decide whether the command
applies to this testsuite run. Here, it always applies.

	An optional message to describe why this command is here.

The first command whose guard evaluates to true applies. We can see it in
action:

$./testsuite.py -j8
INFO Found 3 tests
INFO XFAIL multiplication: unexpected output (erroneous multiplication: see bug #1234)
INFO PASS subtraction
INFO PASS addition
INFO Summary:
_ PASS 2
_ XFAIL 1

You can learn more about this specific test control mechanism and even how to
create your own mechanism in e3.testsuite.control: Control test execution.

e3.testsuite.result: Create test results

As presented in the Core concepts, each testcase can produce one or
several test results. But what is a test result exactly? The answer lies in the
e3.testsuite.result module. The starting point is the TestResult class
it defines.

TestResult

This test result class is merely a data holder. It contains:

	the name of the test corresponding to this result;

	the test status (a TestStatus instance: see the section below) as well as
an optional one-line message to describe it;

	various information to help post-mortem investigation, should any problem
occur (logs, list of subprocesses spawned during test execution, environment
variables, …).

Even though test drivers create a default TestResult instance
(self.result test driver attribute), the actual registration of test
results to the testsuite report is manual: test drivers must call their
push_result method for that. This is how a single test driver instance
(i.e. a single testcase) can register multiple test results.

The typical use case for a single driver instance pushing multiple test results
is for testcases that contain multiple “inputs” and 1) compile a test program
2) run that program once for each input. In this case, it makes sense to create
one test result per input, describing whether the software behaves as expected
for each one independently rather than creating a single result that describes
whether the software behaved well for all inputs.

This leads to the role of the test result name (test_name attribute of
TestResult instances). The name of the default result that drivers create
is simply the name of the testcase. This is a nice start, since it makes it
super easy for someone looking at the report to relate the FAIL foo-bar
result to the foo/bar testcase. By convention, drivers that create multiple
results assign them names such as TEST_NAME.INPUT_NAME, i.e. just put a dot
between the testcase name and the name of the input that triggers the emission
of a separate result.

An example may help to clarify. Imagine a testsuite for a JSON handling
library, and the following testcase that builds a test program that 1) parses
its JSON input 2) pretty-prints that JSON document on its output:

parsing/
 test.yaml
 test_program.c

 empty-array.json
 empty-array.out

 zero.json
 zero.out

 ...

A test driver for this testcase could do the following:

	Build test_program.c, a program using the library to test (no test result
for that).

	Run that program on empty-array.json, compare its output to
empty-array.out and create a test result for that comparison, whose name
is parsing.empty-array.

	Likewise for zero.json and zero.out, creating a parsing.zero test
result.

	…

Here is the exhaustive list of TestResult attributes:

	test_name

	Name for this test result.

	env

	Dictionary for the test environment.

	status

	Status for this test result.

	msg

	Optional (None or string) short message to describe this result. Strings
must not contain newlines. This message usually comes as a hint to explain
why the status is not PASS: unexpected output, expected failure from
the test.yaml file, etc.

	log

	Log instance to contain free-form text, for debugging
purposes. Test drivers can append content to it that will be useful for
post-mortem investigations if things go wrong during the test execution.

	processes

	List of free-form information to describe the subprocesses that the test
driver spawned while running the testcase, for debugging purposes. The only
constraint is that this attribute must contain YAML-serializable data.

Note

This is likely redundant with the log attribute, so this
attribute could be removed in the future.

	failure_reasons

	When the test failed, optional set of reasons for the failure. This
information is used only in advanced viewers, which may highlight
specifically some failure reasons. For instance, highlight crashes, that may
be more important to investigate than mere unexpected outputs.

	expected, out and diff

	Drivers that compare expected and actual output to validate a testcase
should initialize these with Log instances to hold the expected test
output (self.expected) and the actual test output (self.out). It is
assumed that the test fails when there is at least one difference between
both.

Note that several drivers refine expected/actual outputs before running the
comparison (see for instance the output refining mechanism). These logs are supposed to contain the outputs
actually passed to the diff computation function, i.e. after refining, so
that whatever attemps to re-compute the diff (report production, for
instance) get the same result.

If, for some reason, it is not possible to store expected and actual
outputs, self.diff can be assigned a Log instance holding the diff
itself. For instance, the output of the diff -u command.

	time

	Optional decimal number of seconds (float). Test drivers can use this
field to track performance, most likely the time it took to run the test.
Advanced results viewer can then plot the evolution of time over software
evolution.

	info

	Key/value string mapping, for unspecified use. The only restriction is that
no string can contain a newline character.

TestStatus

This is an Enum subclass, allowing to classify results: tests that passed
(TestStatus.PASS), tests that failed (TestStatus.FAIL), etc. For
convenience, here the list of all available statuses as described in the
result.py module:

	PASS

	The test has run to completion and has succeeded.

	FAIL

	The test has run enough for the testsuite to consider that it failed.

	XFAIL

	The test has run enough for the testsuite to consider that it failed, and
that this failure was expected.

	XPASS

	The test has run to completion and has succeeded whereas a failure was
expected. This corresponds to UOK in old AdaCore testsuites.

	VERIFY

	The test has run to completion, but it could not self-verify the test
objective (i.e. determine whether it succeeded). This test requires an
additional verification action by a human or some external oracle.

	SKIP

	The test was not executed (it has been skipped). This is appropriate when
the test does not make sense in the current configuration (for instance it
must run on Windows, and the current OS is GNU/Linux).

This is equivalent to DejaGnu’s UNSUPPORTED, or UNTESTED test outputs.

	NOT_APPLICABLE

	The test has run and managed to automatically determine it can’t work on a
given configuration (for instance, a test scenario requires two distinct
interrupt priorities, but only one is supported on the current target).

The difference with SKIP is that here, the test has started when it
determined that it would not work. The definition of when a test actually
starts is left to the test driver.

	ERROR

	The test could not run to completion because it is misformatted or due to an
unknown error. This is very different from FAIL, because here the problem
comes more likely from the testcase or the test framework rather than the
tested software.

This is equivalent to DejaGnu’s UNRESOLVED test output.

Log

This class acts as a holder for strings or sequences of bytes, to be used as
free-form textual logs, actual output, … in TestResult instances.

The only reason to have this class instead of just holding Python’s
string/bytes objects is to control the serialization of these logs to
YAML. Interaction wiht these should be transparent to test drivers anyway, as
they are intended to be used in append-only mode. For instance, to add a line
to a test result’s free-form log:

In this example, self.result.log is already a Log instance holding a "str"
instance.
self.result.log += "Test failed because mandatory.txt file not found.\n"

FailureReason

A testcase may produce FAIL results for very various reasons: for instance
because process output is unexpected, or because the process crashed. Since
crashes may be more urgent to investigate than “mere” unexpected outputs,
advanced report viewers may want to highlight them specifically.

To answer this need, test drivers can set the .failure_reasons attribute in
TestResult instances to a set of FailureReason values.
FailureReason is an Enum subclass that defines the following values:

	CRASH

	A process crash was detected. What is a “crash” is not clearly specified: it
could be for instance that a “GCC internal compiler error” message is
present in the test output.

	TIMEOUT

	A process was stopped because it timed out.

	MEMCHECK

	The tested software triggered an invalid memory access pattern. For
instance, Valgrind found a conditional jump that depends on uninitialized
data.

	DIFF

	Output is not as expected.

e3.testsuite.driver: Core test driver API

The first sections of this part contain information that applies to all test
drivers. However, starting with the Test fragments section, it describes
the low level TestDriver API, to create test drivers. You should consider
using it only if higher lever APIs, such as ClassicTestDriver and DiffTestDriver are not powerful enough for
your needs. Still, knowing how things work under the hood may help when issues
arise, so reading this part until the end can be useful at some point.

Basic API

All test drivers are classes that derive directly or indirectly from
e3.testsuite.driver.TestDriver. Instances contain the following attributes:

	env

	e3.env.BaseEnv instance, inherited from the testsuite. This object
contains information about the host/build/target platforms, the testsuite
parsed command-line arguments, etc. More on this in e3.testsuite: Testsuite API.

	test_env

	The testcase environment. It is a dictionary that contains at least the
following entries:

	test_name: The name that the testsuite assigned to this testcase.

	test_dir: The absolute name of the directory that contains the
testcase.

	working_dir: The absolute name of the temporary directory that this
test driver is free to create (see below) in order to run the testcase.

Depending on how the way the testcase has been created (see
e3.testsuite.testcase_finder: Control testcase discovery), this dictionary may contain other entries:
for test.yaml-based tests, this will also contain entries loaded from
the test.yaml file.

	result

	Default TestResult instance for this testcase. See e3.testsuite.result: Create test results.

Test/working directories

Test drivers need to deal with two directories specific to each testcase:

	Test directory

	This is the “source” of the testcase: the directory that contains the
test.yaml file. Consider this repertory read-only: it is bad practice to
have execution modify the source of a testcase.

	Working directory

	In order to execute a testcase, it may be necessary to create files and
directories in some temporary place, for instance to build a test program.
While using Python’s standard mechanism to create temporary files
(tempfile module) is an option, e3.testsuite provide its own
temporary directory management facility, which is more helpful when
investigating failures.

Each testcase is assigned a unique subdirectory inside the testsuite’s
temporary directory: the testcase working directory, or just “working
directory”. Note that the testsuite only reserves the name of that
subdirectory: it is up to test drivers to actually create it, should they
need it.

Inside test driver methods, directory names are available respectively as
self.test_env["test_dir"] and self.test_env["working_dir"]. In
addition, two shortcut methods allow to build absolute file names inside these
directories: TestDriver.test_dir and TestDriver.working_dir. Both work
similarly to os.path.join:

Absolute name for the "test.yaml" in the test directory
self.test_dir("test.yaml")

Absolute name for the "obj/foo.o" file in the working directory
self.test_dir("obj", "foo.o")

Warning

What follows documents the advanced API. Only complex testsuites should need
this.

Test fragments

The TestDriver API deals with an abstraction called test fragments. In
order to leverage machines with multiple cores so that testsuites run faster,
we need processings to be separated into independent parts to be scheduled in
parallel. Test fragments are such independent parts: the fact that a test
driver can create multiple fragments for a single testcase allows finer
granularity for testcase execution parallelisation compared to “a whole
testcase reserves a whole core”.

When a testsuite runs, it first looks for all testcases to run, then ask their
test drivers to create all the test fragments they need to execute tests. Only
then, a scheduler is spawned to run test fragments with the desired level of
parallelism.

This design is supposed to work with workflows such as “build test program and
only then run in parallel all tests using this program”. To allow this, test
drivers can create dependencies between test fragments. This formalism is very
similar to the dependency mechanism in build software such as make: the
scheduler will first trigger the execution of fragments with no dependency,
then of fragments with dependencies satisfied, etc.

To continue with the JSON example presented in e3.testsuite.result: Create test results: the test
driver can create a build fragment (with no dependency) and then one
fragment per JSON document to parse (all depending on the build fragment).
The scheduler will first trigger the execution of the build fragment: once
this fragment has run to completion, the scheduler will be able to trigger the
execution of all other fragments in parallel.

Creating test drivers

As described in the tutorial, creating a
test driver implies creating a TestDriver subclass. The only thing such
subclasses are required to do is to provide an implementation for the
add_test method, which acts as an entry point. Note that there should be no
need to override the constructor.

This add_test method has one purpose: register test fragments, and the
TestDriver.add_fragment method is available to do so. This latter method
has the following interface:

def add_fragment(self, dag, name, fun=None, after=None):

	dag

	Data structure that hold fragments and that the testsuite scheduler will use
to run jobs in the correct order. The add_test method must forward its
own dag argument to add_fragment.

	name

	String to designate this new fragment in the current testcase.

	fun

	Test fragment callback. It must accept two positional arguments:
previous_values and slot. When this test fragment is executed, this
function is called and passed as previous_values a mapping that contains
return values from previously executed fragments. Later, other test
fragments executed will see fun’s own return value in this record under
the name key.

If left to None, add_fragment will fetch the test driver method
called name.

The slot argument is described below.

	after

	List of fragment names that this new fragment depends on. The testsuite will
schedule the execution of this new fragment only after all the fragments
that after designates have been executed. Note that its execution will
happen even if one or several fragments in after terminated with an
exception.

Let’s again continue with this JSON example. It is time to roll a
TestDriver subclass, define the appropriate add_test method to create
test fragments.

from glob import glob
import subprocess

from e3.testsuite.driver import TestDriver
from e3.testsuite.result import TestResult, TestStatus

class ParsingDriver(TestDriver):

 def add_test(self, dag):
 # Register the "build" fragment, no dependency. The fragment
 # callback is the "build" method.
 self.add_fragment(dag, "build")

 # For each input JSON file in the testcase directory, create a
 # fragment to run the parser on that JSON file.
 for json_file in glob(self.test_dir("*.json")):
 input_name = os.path.splitext(json_file)[0]
 fragment_name = "parse-" + input_name
 out_file = json_file + ".out"

 self.add_fragment(
 dag=dag,

 # Unique name for this fragment (specific to json_file)
 name=fragment_name,

 # Unique callback for this fragment (likewise)
 fun=self.create_parse_callback(
 fragment_name, json_file, out_file
),

 # This fragment only needs the build to happen first
 after=["build"]
)

 def build(self, previous_values):
 """Callback for the "build" fragment."""
 # Create the temporary directory for this testcase
 os.mkdir(self.working_dir())

 # Build the test program, writing it to this temporary directory
 # (don't ever modify the testcase source directory!).
 subprocess.check_call(
 ["gcc", "-o", "test_program", self.test_dir("test_program.c")],
 cwd=self.working_dir()
)

 # Return True to tell next fragments that the build was successful
 return True

 def create_parse_callback(self, fragment_name, json_file, out_file):
 """
 Return a callback for a "parse" fragment applied to "json_file".
 """

 def callback(previous_values):
 """Callback for the "parse" fragments."""
 # We can't do anything if the build failed
 if not previous_values.get("build"):
 return False

 # Create a result for this specific test fragment
 result = TestResult(fragment_name, self.test_env)

 # Run the test program on the input JSON, capture its output
 with open(self.test_dir(json_file), "rb") as f:
 output = subprocess.check_output(
 ["./test_program"],
 stdin=f,
 stderr=subprocess.STDOUT
)

 # The test passes iff the output is as expected
 with open(self.test_dir(out_file), "rb") as f:
 if f.read() == output:
 result.set_status(TestStatus.PASS)
 else:
 result.set_status(TestStatus.FAIL, "unexpected output")

 # Test fragment is complete. Don't forget to register this
 # result. No fragment depends on this one, so no-one will use
 # the return value in a previous_values mapping. Yet, return
 # True as a good practice.
 self.push_result(result)
 return True

Note that this driver is not perfect: calls to subprocess.check_call and
subprocess.check_output may raise exceptions, for instance in
test_program.c is missing or has a syntax error, if its execution fails for
some reason. Opening the *.out files also assumes that the file is present.
In all these cases, an unhandled exception will be propagated. The testsuite
framework will catch these and create an ERROR test result to include the
error in the report, so errors will not go unnoticed (good), but the error
messages will not necessarily make debugging easy (not so good).

A better driver would catch manually likely exceptions, and create
TestResult instances with useful information, such as the name of the
current step (build or parse) and the current input JSON file (if
applicable) so that testcase developpers have all the information they need to
understand errors when they occur.

Test fragment abortion

During their execution, test fragment callbacks can raise
e3.testsuite.TestAbort exceptions: if exception propagation reaches the
callback’s caller, the test fragment execution will be silently discarded. This
implies no entry left in previous_values and, unless the callback already
pushed a result (TestDriver.push_result), there will be no track of this
fragment in the test report.

However, if a callback raises another type of uncaught exception, the testsuite
creates and pushes a test result with an ERROR status and with the
exception traceback in its log, so that this error appears in the testsuite
report.

Test fragment slot

Each test fragment can be scheduled to run in parallel, up to the parallelism
level requested when running the testsuite: --jobs=N/-jN testsuite argument
creates N jobs to run fragments in parallel.

Some testsuites need to create special resources for testcases to run. For
instance, the testsuite for a graphical text editor running on GNU/Linux may
need to spawn Xvfb processes (X servers) in which the text editors will
run. If the testsuite can execute N multiple fragments in parallel, it
needs at least N simultaneously running servers since each text editor
requires the exclusive use of a server. In other words, two concurrent tests
cannot use the same server.

Make each test create its own server is possible, but starting and stopping a
server is costly. In order to satisfy the above requirement and keep the
overhead minimal, it would be nice to start exactly N servers at the
beginning of the testsuite (one per testsuite job): at any time, job J
would be the only user of server J, so there would be no conflict between
test fragments.

This is exactly the role of the slot argument in test fragments callback:
it is a job ID between 1 and the number N of testsuite jobs (included).
Test drivers can use it to handle shared resources avoiding conflicts.

Inter-test dependencies

This section presents how to create dependencies between fragments that don’t
belong to the same tests. But first, a warning: the design of e3-testsuite
is thought primarily for tests that are independent: tests not interacting so
that each test can be executed and not the others. Introducing inter-test
dependencies removes this restriction, which introduces a fair amount of
complexity:

	The execution of tests must be synchronized so that the one that depends on
another one must run after it.

	There is likely logistic to take care of so that whatever justifies the
dependency is carried from one test to the other.

	A test does not depend only on what is being tested, but may also depend on
what other tests did, which may make tests more fragile and complicates
failure analysis.

	When a user asks to run only one test, while this test happens to depend on
another one, the testsuite needs to make sure that this other test is also
run.

Most of the time, these drawbacks make inter-test dependencies inappropriate,
and thus better avoided. However there are cases where they are necessary. Real
world examples include:

	Writing an e3-testsuite based test harness to exercize existing
inter-dependent testcases that cannot be modified. For instance, the ACATS
(Ada Conformity Assessment Test Suite) [http://www.ada-auth.org/acats.html]
has some tests which write files and other tests that then read later on.

	External constraints require separate tests to host the validation of data
produced in other tests. For instance a qualification testsuite (in the
context of software certification) that needs a single test (say
report-format-check) to check that all the outputs of a qualified tool
throughout the testsuite (say output of tests feature-A, feature-B,
…) respect a given constraint.

Notice how, in this case, the outcome of such a test depends on how the
testsuite is run: if report-format-check detects a problem in the output
from feature-A but not in outputs from other tests, then
report-format-check will pass or fail depending on the specific set of
tests that the testsuite is requested to run.

With these pitfalls in mind, let’s see how to create inter-test dependencies.
First, a bit of theory regarding the logistics of test fragments in the
testsuite:

The description of the TestDriver.add_fragment method above mentionned a crucial data structure in the
testsuite: the DAG (Directed Acyclic Graph). This graph (an instance of
e3.collections.dag.DAG) contains the list of fragments to run as nodes and
the dependencies between these fragments as edges. The DAG is then is used to
schedule their execution: first execute fragments that have no dependencies,
then fragments that depend on these, etc.

Each node in this graph is a FragmentData instance, that the
add_fragment method creates. This class has four fields:

	uid, a string used as an identifier for this fragment that is unique in
the whole DAG (it corresponds to the VertexID generic type in
e3.collections.dag). add_fragment automatically creates it from the
driver’s test_name field and add_fragment’s own name argument.

	driver, the test driver that created this fragment.

	name, the name argument passed to add_fragment.

	callback, the fun argument passed to add_fragment.

Our goal here is, once the DAG is populated with all the FragmentData to
run, to add dependencies between them to express scheduling constraints.
Overriding the Testsuite.adjust_dag_dependencies method allows this: this
method is called when the DAG was created and populated, and right before the
scheduling and starting the execution of fragments.

As as simplistic example, suppose that a testsuite has two kinds of drivers:
ComputeNumberDriver and SumDriver. Tests running with
ComputeNumberDriver have no dependencies, while each test using
SumDriver needs the result of all ComputeNumberDriver (i.e. depends on
all of them). Also assume that each driver creates only one fragment (more on
this later), then the following method overriding would do the job:

def adjust_dag_dependencies(self, dag: DAG) -> None:
 # Get the list of all fragments for...

 # ... ComputeNumberDriver
 comp_fragments = []

 # ... SumDriver
 sum_fragments = []

 # "dag.vertex_data" is a dict that maps fragment UIDs to FragmentData
 # instances.
 for fg in dag.vertex_data.values():
 if isinstance(fg.driver, ComputeNumberDriver):
 comp_fragments.append(fg)
 elif isinstance(fg.driver, SumDriver):
 sum_fragments.append(fg)

 # Pass the list of ComputeNumberDriver fragments to all SumDriver
 # instances and make sure SumDriver fragments run after all
 # ComputeNumberDriver ones.
 comp_uids = [fg.uid for fg in comp_fragments]
 for fg in sum_fragments:
 # This allows code in SumDriver to have access to all
 # ComputeNumberDriver fragments.
 fg.driver.comp_fragments = comp_fragments

 # This creates the scheduling constraint: the "fg" fragment must
 # run only after all "comp_uids" fragments have run.
 dag.update_vertex(vertex_id=fg.uid, predecessors=comp_uids)

Note the use of the DAG.update_vertex method rather than
.set_predecessors: the former adds predecessors (i.e. preserves existing
ones, that the TestDriver.add_fragment method already created) while the
latter would override them.

Some drivers create more than one fragment: for instance
e3.testsuite.driver.BasicDriver creates a set_up fragment, a run
one, a tear_down one and a analyze one, which each fragment having a
dependency on the previous one. To deal with them, adjust_dag_dependencies
need to check the FragmentData.name field to get access to specific
fragments:

Look for the "run" fragment from FooDriver tests
if fg.name == "run" and isinstance(fg.driver, FooDriver):
 ...

FragmentData provides a helper to do this:
if fg.matches(FooDriver, "run"):
 ...

e3.testsuite.driver.classic: Common test driver facilities

The driver.classic module’s main contribution is to provides a
TestDriver convenience subclass: ClassicTestDriver, that test driver
implementations are invited to derive from.

It starts with an assumption, considered to be common to most real world use
cases: testcases are atomic, meaning that the execution of each testcase is a
single chunk of work that produces a single test result. This assumption allows
to provide a simpler framework compared to the base TestDriver API, so that
test drivers are easier to write.

First, there is no need to create fragments and handle
dependencies: the minimal requirement for ClassicTestDriver subclasses is
to define a run method. As you have probably guessed, its sole
responsibility is to proceed to testcase execution: build what needs to be
built, spawn subprocesses as needed, etc.

Working directory management

ClassicTestDriver considers that most drivers will need to create the
temporary directories, and thus make it the default: before running the
testcase, this driver will copy the test directory to the working directory.
Subclasses can override this behavior overriding the copy_test_directory
property. For instance, to disable this copy unconditionally:

class MyDriver(ClassicTestDriver):
 copy_test_directory = False

Alternatively, to disable it only if the test.yaml file contains a
no-copy entry:

class MyDriver(ClassicTestDriver):
 @property
 def copy_test_directory(self):
 return not self.test_env.get("no-copy")

Output encodings

Although the concept of “test output” is not precisely defined here,
ClassicTestDriver has provisions for the very common pattern of drivers
that build a string (the test output) and that, once the test has run, analyze
of the content of this output determines whether the testcase passed or failed.
For this reason, the self.output attribute contains a Log instance (see
Log).

Although drivers generally want to deal with actual strings (str in
Python3, a valid sequence of Unicode codepoints), at the OS level, process
outputs are mere sequences of bytes (bytes in Python3), i.e. binary data.
Such drivers need to decode the sequence of bytes into strings, and for that
they need to pick the appropriate encoding (UTF-8, ISO-8859-1, …).

The default_encoding property returns the name of the default encoding used
to decode process outputs (as accepted by the str.encode() method:
utf-8, latin-1, …). If it returns binary, outputs are not decoded
and self.output is set to a Log instance that holds bytes.

The default implementation for this property returns the encoding entry
from the self.test_env dict. If there is no such entry, it returns
utf-8 (the most commonly used encoding these days).

Spawning subprocesses

Spawning subprocesses is so common that this driver class provides a
convenience method to do it:

def shell(self, args, cwd=None, env=None, catch_error=True,
 analyze_output=True, timeout=None, encoding=None):

This will run a subprocess given a list of command-line arguments (args);
its standard input is redirected to /dev/null while both its standard
output/error streams are collected as a single stream. shell returns a
ProcessResult instance once the subprocess exitted. ProcessResult is
just a holder for process information: its status attribute contains the
process exit code (an integer) while its out attribute contains the
captured output.

Note that the shell method also automatically appends a description of the
spawned subprocess (arguments, working directory, exit code, output) to the
test result log.

Its other arguments give finer control over process execution:

	cwd

	Without surprise for people familiar with process handling APIs: this
argument controls the directory in which the subprocess is spawned. When
left to None, the processed is spawned in the working directory.

	env

	Environment variables to pass to the subprocess. If left to None, the
subprocess inherit the Python interpreter’s environment.

	catch_error

	If true (the default), shell will check the exit status: if it is 0,
nothing happen, however if it is anything else, shell raises an
exception to abort the testcase with a failure (see
Exception-based execution control for more details). If set to false, nothing
special happens for non-0 exit statuses.

	analyze_output

	Whether to append the subprocess output to self.output (see
Output encodings). This is for convenience in test drivers
based on output comparison (see e3.testsuite.driver.diff: Test driver for actual/expected outputs).

	timeout

	Number of seconds to allow for the subprocess execution: if it lasts longer,
the subprocess is aborted and its status code is set to non-zero.

If left to None, use instead the timeout that the
default_process_timeout property returns. The ClassicTestDriver
implementation for that property returns either the timeout entry from
self.test_env (if present) or 300 seconds (5 minutes). Of course,
subclasses are free to override this property if needed.

	encoding

	Name of the encoding used to decode the subprocess output. If left to
None, use instead the encoding that the default_encoding property
returns (see Output encodings). Here, too, the default
implementation returns the encoding entry from self.test_env (if
present) or utf-8. Again, subclasses are free to override this property
if needed.

	truncate_logs_threshold

	Natural number, threshold to truncate the subprocess output that shell
logs in the test result log. This threshold is
interpreted as half the number of output lines allowed before truncation,
and 0 means that truncation is disabled. If left to None, use the
testsuite’s --truncate-logs option.

Set up/analyze/tear down

The common organization for test driver execution has four parts:

	Initialization: make sure input is valid: required files must be present
(test program sources, input files), metadata is valid, start a server, and
so on.

	Execution: the meat happens here: run the necessary programs, write the
necessary files, …

	Analysis: look at the test output and decide whether the test passed.

	Finalization: free resources, shut down the server, ..

ClassicTestDriver defines four overridable methods, one for each step:
set_up, run, analyze and tear_down. First, the set_up
method is called, then the run one and then the analyze one. So far,
any unhandled exception in these methods would prevent the next ones to run.
Except for the tear_down method, which is called no matter what happens as
long as the set_up method was called.

The following example shows how this is useful. Imagine a testsuite for a
database server. We want some test drivers only to start the server (leaving
the rest to testcases) while we want other test drivers to perform more
involved server initialization.

class BaseDriver(ClassicTestDriver):
 def set_up(self):
 super().set_up()
 self.start_server()

 def run(self):
 pass # ...

 def tear_down(self):
 self.stop_server()
 super().tear_down()

class FixturesDriver(BaseDriver):
 def set_up(self):
 super(FixturesDriver, self).set_up()
 self.install_fixtures()

The install_fixtures() call has to happen after the start_server() one,
but before the actual test execution (run()). If initialization, execution
and finalization all happened in BaseDriver.run, it would not be possible
for FixturesDriver to insert the call at the proper place.

Note that ClassicTestDriver provide valid default implementations for all
these methods except run, which subclasses have to override.

The analyze method is interesting: its default implementation calls the
compute_failures method, which returns a list of error messages. If that
list is empty, it considers that there is no test failure, and thus that the
testcase passed. Otherwise, it considers that the test failed. In both cases,
it appropriately set the status/message in self.result and pushes it to the
testsuite report.

That means that in practice, test drivers only need to override this
compute_failures method in order to properly analyze test output. For
instance, let’s consider a test driver whose run method spawns a supbrocess
and must consider that the test succeeds iff the SUCCESS string appears in
the output. The following would do the job:

class FooDriver(ClassicTestDriver):
 def run(self):
 self.shell(...)

 def compute_failures(self):
 return (["no match for SUCCESS in output"]
 if "SUCCESS" not in self.output
 else [])

Metadata-based execution control

Deciding whether to skip a testcase, or expecting a test failure are both so
common that ClassicTestDriver provides a mechanism which makes it possible
to control testcase execution thanks to metadata in that testcase.

By default, it is based on metadata from the test environment
(self.test_env, i.e. from the test.yaml file), but each driver can
customize this. This mechanism is described extensively in e3.testsuite.control: Control test execution.

Exception-based execution control

The e3.testsuite.driver.classic module defines several exceptions that
ClassicTestDriver subclasses can use to control the execution of testcases.
These exceptions are expected to be propagated from the set_up, run and
analyze methods when appropriate. When they are, this stops the execution
of the testcase (next methods are not run). Please refer to
TestStatus for the meaning of test statuses.

	TestSkip

	Abort the testcase and push a SKIP test result.

	TestAbortWithError

	Abort the testcase and push an ERROR test result.

	TestAbortWithFailure

	Abort the testcase and push a FAIL test result, or XFAIL if a
failure is expected (see e3.testsuite.control: Control test execution).

Colors

Long raw text logs can be difficult to read quickly. Light formatting (color,
brightness) can help in this area, revealing the structure of text logs. Since
it relies on the e3-core project, e3-testsuite already has the
colorama [https://pypi.org/project/colorama/] project in its dependencies.

ClassicTestDriver subclasses can use self.Fore and self.Style
attributes as “smart” shortcuts for colorama.Fore and colorama.Style:
if there is a single chance for text logs to be redirected to a text file
(rather than everything to be printed in consoles), colors support is disable
and these two attributes yield empty strings instead of the regular console
escape sequences.

The shell method already uses them to format the logging of subprocesses in
self.result.log:

self.result.log += (
 self.Style.RESET_ALL + self.Style.BRIGHT
 + "Status code" + self.Style.RESET_ALL
 + ": " + self.Style.DIM + str(p.status) + self.Style.RESET_ALL
)

This will format Status code in bright style and the status code in dim
style if formatting is enabled, and will just return Status code: 0`
without formatting when disabled.

Test fragment slot

Even though each testcase using a ClassicTestDriver subclass has a single
test fragment, it can be useful for drivers to know which slot they are being run on. The slot is available in the
self.slot driver attribute.

e3.testsuite.driver.diff: Test driver for actual/expected outputs

The driver.diff module defines DiffTestDriver, a ClassicTestDriver
subclass specialized for drivers whose analysis is based on output comparisons.
It also defines several helper classes to control more precisely the comparison
process.

Basic API

The whole ClassicTestDriver API is available in DiffTestDriver, and the
overriding requirements are the same:

	subclasses must override the run method;

	they can, if need be, override the set_up and tear_down methods.

Note however that unlike its parent class, it provides an actually useful
compute_failures method override, which compares the test actual output and
the output baseline:

	The test actual output is what the self.output Log instance holds:
this is where the analyze_output from the shell method matters.

	The output baseline, which we could also call the test expected output, is
by default the content of the test.out file, in the test directory. As
explained below, this defalut can be
changed.

Thanks to this subclass, writing real world test drivers requires little code.
The following example just runs the my_program executable with arguments
provided in the test.yaml file, and checks that its status code is 0 and
that its output matches the content of the test.yaml file:

from e3.testsuite.driver.diff import DiffTestDriver

class MyTestDriver(DiffTestDriver):
 def run(self):
 argv = self.test_env.get("argv", [])
 self.shell(["my_program"] + argv)

Output encodings

See Output encodings for basic notions regarding string
encoding/decoding concerns in ClassicTestDriver and all its subclasses.

In binary mode (the default_encoding property returns binary),
self.output is initialized to contain a Log instance holding bytes.
The shell method doesn’t decode process outputs: they stay as bytes and
thus their concatenation to self.output is valid. In addition, the baseline
file (test.out by default) is read in binary mode, so in the end,
DiffTestDriver only deals with bytes instances.

Conversely, in text mode, self.output is a Log instance holding str
objects, which the shell method extends with decoded process outputs, and
finally the baseline file is read in text mode, decoded using the same string
encoding.

Handling output variations

In some cases, program outputs can contain unpredictible parts. For instance,
the following script:

o = object()
print(o)

Can have the following output:

$ python foo.py
<object object at 0x7f15fbce1970>

… or the following:

$ python foo.py
<object object at 0x7f4f9e031970>

Although it’s theoretically possible to constrain the execution environment
enough to make the printed address constant, it is hardly practical. There can
be a lot of other sources of output variation: printing the current date,
timing information, etc.

DiffTestDriver provides two alternative mechanisms to handle such cases:
match actual output against regular expressions, or refine outputs before
the comparison.

Regexp-based matching

Instead of providing a file that contains byte-per-byte or
codepoint-per-codepoint expected output, the baseline can be considered as a
regular expression. With this mechanism, the following test.out:

<object object at 0x.*>

will match the output of the foo.py example script above. This relies on
Python’s standard re module: please refer to its documentation [https://docs.python.org/3/library/re.html] for the syntax reference and the
available regexp features.

In order to switch to regexp-matching on a per-testcase basis, just add the
following to the test.yaml file:

baseline_regexp: True

Output refining

Another option to match varying outputs is to refine them, i.e. perform
substitutions to hide varying parts from the comparison. Applied to the
previous example, the goal is to refine such outputs:

<object object at 0x7f15fbce1970>

To a string such as following:

<object object at [HEX-ADDR]>

To achieve this goal, the driver.diff module defines the following abstract
class:

class OutputRefiner:
 def refine(self, output):
 raise NotImplementedError

Subclasses must override the refine method so that it takes the original
output (output argument) and return the refined output. Note that depending
on the encoding, output can be either a string (str instance) or binary
data (bytes instance): in each case it must return an object that has the
same type as the output argument.

Several very common subclasses are available in driver.diff:

	Substitute(substring, replacement="")

	Replace a specific substring. For instance:

Just remove occurences of <foo>
(replace them with an empty string)
Substitute("<foo>")

Replace occurences of <foo> with <bar>
Substitute("<foo>", "<bar>")

	ReplacePath(path, replacement="")

	Replace a specific filename: path itself, the corresponding absolute
path or the corresponding Unix-style path.

	PatternSubstitute(pattern, replacements="")

	Replace anything matching the pattern regular expression.

Using output refiners from DiffTestDriver instances is very easy: just
override the output_refiners property in subclasses to return a list of
OutputRefiner to apply on actual outputs before comparing them with
baselines.

To complete the foo.py example above, thanks to the following overriding:

@property
def output_refiners(self):
 return [PatternSubstitute("0x[0-9a-f]+", "[HEX-ADDR]")]

All refined outputs from foo.py would match the following baseline:

<object object at [HEX-ADDR]>

Note that even though refiners only apply to actual outputs by default, it is
possible to also apply them to baselines. To do this, override the
refine_baseline property:

@property
def refine_baseline(self):
 return True

This behavior is disabled by default because a very common refinment is to
remove occurences of the working directory from the test output. In that case,
baselines that contain the working directory (for instance
/home/user/my-testsuite/tmp/my-test) will be refined as expected with the
setup of the original testcase author, but will not on another setup (for
instance when the working directory is /tmp/testsuite-tmp-dir).

Alternative baselines

DiffTestDriver subclasses can override two properties in order to select
the baseline to use as well as the output matching mode (equality vs. regexp):

The baseline_file property must return a (filename, is_regexp) couple.
The first item is the name of the baseline file (relative to the test
directory), i.e. the file that contains the output baseline. The second one is
a boolean that determines whether to use the regexp matching mode (if true) or
the equality mode (if false).

If, for some reason (for instance: extracting the baseline is more involved
than just reading the content of a file) the above is not powerful enough, it
is possible instead to override the baseline property. In that case, the
baseline_file property is ignored, and baseline must return a 3-element
tuple:

	The absolute filename for the baseline file, if any, None otherwise.
Only a present filename allows baseline rewriting.

	The baseline itself: a string in text mode, and a bytes instance in
binary mode.

	Whether the baseline is a regexp.

Automatic baseline rewriting

Often, test baselines depend on formatting rules that need to evolve over time.
For example, imagine a testsuite for a program that keeps track of daily
min/max temperatures. The following could be a plausible test baseline:

01/01/2020 260.3 273.1
01/02/2020 269.2 273.2

At some point, it is decided to change the format for dates. All baselines need
to be rewritten, so the above must become:

2020-01-01 260.3 273.1
2020-01-02 269.2 273.2

That implies manually rewriting the baselines of potentially a lot of tests.

DiffTestDriver makes it possible to automatically rewrite baselines for
all tests based on equality (not regexps). Of course, this is disabled by
default: one needs to run it only when such pervasive output changes are
expected, and baseline updates need to be carefully reviewed afterwards.

Enabling this behavior is as simple as setting self.env.rewrite_baselines
to True in the Testsuite instance. The APIs to use for this are properly
introduced later, in e3.testsuite: Testsuite API. Here is a short example, in the
meantime:

class MyTestsuite(Testsuite):

 # Add a command-line flag to the testsuite script to allow users to
 # trigger baseline rewriting.
 def add_options(self, parser):
 parser.add_argument(
 "--rewrite", action="store_true",
 help="Rewrite test baselines according to current outputs"
)

 # Before running the testsuite, keep track in the environment of our
 # desire to rewrite baselines. DiffTestDriver instances will pick it up
 # automatically from there.
 def set_up(self):
 super(MyTestsuite, self).set_up()
 self.env.rewrite_baselines = self.main.args.rewrite

Note that baseline rewriting applies only to tests that are not already
expected to fail. Imagine for instance the situation described above (date
format change), and the following testcase:

test.yaml
control:
 - [XFAIL, "True",
 "Precision bug: max temperature is 280.1 while it should be 280.0"]

test.out
01/01/2020 270.3 280.1

The testsuite must not rewrite test.out, otherwise the precision bug
(280.1 instead of 280.0) will be recorded in the baseline, and thus the
testcase will incorrectly start to pass (XPASS). But this is just a
compromise: in the future, the testcase will fail not only because of the lack
of precision, but also because of the bad date formatting, so in such cases,
baselines must be manually updated.

e3.testsuite.control: Control test execution

Expecting all testcases in a testsuite to run and pass is not always realistic.
There are two reasons for this.

Some tests may exercize features that make sense only on a specific OS: imagine
for instance a “Windows registry edit” feature, which would make no sense on
GNU/Linux or MacOS systems. It makes no sense to even run such tests when not
in the appropriate environment.

In parallel: even though our ideal is to have perfect software, real world
programs have many bugs. Some are easy to fix, but some are so hard that they
can take days, months or even years to resolve. Creating testcases for bugs
that are not fixed yet makes sense: such tests allow to keep track of “known”
bugs, in particular when they unexpectedly pass whereas the bug is already
supposed to be around. Running such tests has value, but clutters the testsuite
reports, potentially hiding unexpected failures in the middle of many known
ones.

For the former, it is appropriate to create SKIP test results (you can read
more about test statuses in TestStatus). The latter is
the raison d’être of the PASS/XPASS and FAIL/XFAIL distinctions: in theory all
results should be PASS or XFAIL, so when looking for regressions after a
software update, one only needs to look at XPASS and FAIL statuses.

Basic API

The need to control whether to execute testcases and how to “transform” its
test status (PASS to XPASS, FAIL to XFAIL) is so common that e3-testsuite
provides an abstraction for that: the TestControl class and the
TestControlCreator interface.

Note that even though this API was initially created as a helper for
ClassicTestDriver, it is designed separately so that it
can be reused in other drivers.

TestControl is just a data structure to hold the decision regarding test
control:

	the skip attribute is a boolean, specifying whether to skip the test;

	the xfail attribute is a boolean, telling whether a failure is expected

	the message attribute is an optional string: a message to convey the
reason behind this decision.

The goal is to have one TestControl instance per test result to create.

TestControlCreator instances allow test drivers to instantiate
TestControl once per test result: their create method takes a test
driver and must return a TestControl instance.

The integration of this API in ClassicTestDriver is simple:

	In test driver subclasses, override the test_control_creator property to
return a TestControlCreator instance.

	When the test is about to be executed, ClassicTestDriver will use this
instance to get a TestControl object.

	Based on this object, the test will be skipped (creating a SKIP test
result) or executed normally, and PASS/FAIL test result will be turned into
XPASS/XFAIL if this object states that a failure is expected.

There is a control mechanism set up by default: the
ClassicTestDriver.test_control_creator property returns a
YAMLTestControlCreator instance.

YAMLTestControlCreator

This object creates TestControl instances from test environment
(self.test_env in test driver instances), i.e. from the test.yaml file
in most cases (the e3.testsuite.testcase_finder: Control testcase discovery later section describes when it’s
not). The idea is very simple: let each testcase specify when to skip
execution/expect a failure depending on the environment (host OS, testsuite
options, etc.).

To achieve this, several “verbs” are available:

	NONE

	Just run the testcase the regular way. This is the default.

	SKIP

	Do not run the testcase and create a SKIP test result.

	XFAIL

	Run the testcase the regular way, expecting a failure: if the test passes,
emit a XPASS test result, emit a XFAIL one otherwise.

Testcases can then put metadata in their test.yaml:

driver: my_driver
control:
- [SKIP, "env.build.os != 'Windows'", "Tests a Windows-specific feature"]
- [XFAIL, "True", "See bug #1234"]

The control entry must contain a list of entries. Each entry contains a
verb, a Python boolean expression, and an optional message. The entries are
processed in order: only the first for which the boolean expression returns
true is considered. The verb and the message determine how to create the
TestControl object.

But where does the env variable comes from in the example above? When
evaluating a boolean expression, YAMLTestCreator passes it variables
corresponding to the condition_env argument constructor argument, plus the
testsuite environment (self.env in test drivers) as env. Please refer
to the e3.env documentation [https://e3-core.readthedocs.io/en/latest/autoapi/e3/env/index.html#module-e3.env]
to know more about environments, which are instances of the AbstractBaseEnv
subclasses.

tcc = YAMLTestControlCreator({"mode": "debug", "cpus": 8})

Condition expressions in driver.test_env["control"] will have access to
three variables: mode (containing the "debug" string), cpus (containing
the 8 integer) and env.
tcc.create(driver)

ClassicTestDriver.test_control_creator instantiates
YAMLTestControlCreator with an empty condition environment, so by default,
only env is available.

With the example above, a YAMLTestControlCreator instance will create:

	TestControl("Tests a Windows-specific feature", skip=True, xfail=False)
on every OS but Windows;

	TestControl("See bug #1234", skip=False, xfail=True)
on Windows.

e3.testsuite: Testsuite API

So far, this documentation focused on writing test drivers. Although these
really are the meat of each testsuite, there are also testsuite-wide features
and customizations to consider.

Test drivers

The Tutorial already covered how to register the set of test drivers in
the testsuite, so that each testcase can chose which driver to use. Just
creating TestDriver subclasses is not enough: testsuite must associate a
name to each available driver.

This all happens in Testsuite.test_driver_map, which as usual can be either
a class attribute or a property. It must contain/return a dict, mapping driver
names to TestDriver subclasses:

from e3.testsuite import Testsuite
from e3.testsuite.driver import TestDriver

class MyDriver1(TestDriver):
 # ...
 pass

class MyDriver2(TestDriver):
 # ...
 pass

class MyTestsuite(Testsuite):
 test_driver_map = {"driver1": MyDriver1, "driver2": MyDriver2}

This is the only mandatory customization when creating a Testsuite
subclass. A nice optional addition is the definition of a default driver:
if most testcases use a single test driver, this will make it handier to create
tests.

class MyTestsuite(Testsuite):
 test_driver_map = {"driver1": MyDriver1, "driver2": MyDriver2}

 # Testcases that don't specify a "driver" in their test.yaml file will
 # automatically run with MyDriver2.
 default_driver = "driver2"

Testsuite environment

Testsuite and TestDriver instances all have a self.env attribute.
This holds a e3.env.BaseEnv instance: the testsuite originally creates it
when starting and forwards it to test drivers.

This environment holds information about the platform for which tests are
running (host OS, target CPU, … as well as parsed options from the
command-line (see below). The testsuite is also free to add more information to
this environment.

If a testsuite actually needs to deal with non-native targets, for instance
running on GNU/Linux for x86_64 tests that involve programs for bare ARM ELF
targets, then it’s useful to override the enable_cross_support class
attribute/property to return true (it returns false by default):

class MyTestsuite(Testsuite):
 enable_cross_support = True

In this case, the testsuite will add --build, --host and --target
command-line arguments. These have the same semantics as the homonym options in
GNU configure scripts: see The GNU configure and build system [https://airs.com/ian/configure/configure_6.html]. The testsuite will then
use these arguments to build the appropriate environment in self.env, and
thus for instance self.env.target.cpu.name will reflect the target CPU.

Command-line options

Note

This section assumes that readers are familiar with Python’s famous
argparse standard package. Please read its documentation [https://docs.python.org/3/library/argparse.html] if this is the first
time you hear about it.

Testsuites often have multiple operating modes. A very common mode is: does it
run programs under Valgrind? Doing this has great value, as it helps finding
invalid memory accesses, use of uninitialized values, etc. but comes at a great
performance cost. So always using Valgrind is not realistic.

Adding a testsuite command-line option is a way to solve this problem: by
default (for the most common cases: day-to-day development runs) Valgrind
support is disabled, and the testsuite enables it when run with a
--valgrind argument (used in continuous builders, for instance).

Adding testsuite options is very simple: in the Testsuite subclass,
override the add_options method. It takes a single argument: the
argparse.ArgumentParser instance that is responsible for parsing the
testsuite command-line arguments. To implement the Valgrind example discussed
above, we can have:

class MyTestsuite(Testsuite):
 def add_options(self, parser):
 parser.add_argument("--valgrind", action="store_true",
 help="Run tests under Valgrind")

The result of command-line parsing, i.e. the result of parser.parse_args()
is made available in self.env.options. This means that test drivers can
then check for the presence of the --valgrind on the command line the
following way:

class MyDriver(ClassicTestDriver):
 def run(self):
 argv = self.test_program_command_line

 # If the testsuite is run with the --valgrind option, run the test
 # program under Valgrind.
 if self.env.options.valgrind:
 argv = ["valgrind", "--leak-check=full", "-q"] + argv

 self.shell(argv)

Set up/tear down

Testsuites that need to execute arbitrary operations right before looking for
tests and running them can override the Testsuite.set_up method. Similarly,
testsuites that need to execute actions after all testcases ran to completion
and after testsuite reports were emitted can override the
Testsuite.tear_down method.

class MyTestsuite(Testsuite):
 def set_up(self):
 # Let the base class' set_up method do its job
 super().set_up()

 # Then do whatever is required before running testcases.
 # Note that by the time this is executed, command-line
 # options are parsed and the environment (self.env)
 # is fully initialized.

 # ...

 def tear_down(self):
 # Do whatever is required to after the testsuite has
 # run to completion.

 # ...

 # Then let the base class' tear_down method do its job
 super().tear_down()

Overriding tests subdirectory

As described in the tutorial, by default the
testsuite looks for tests in the testsuite root directory, i.e. the directory
that contains the Python script in which e3.testsuite.Testsuite is
subclassed. Testsuites can override this behavior with the tests_subdir
property:

class MyTestsuite(Testsuite):
 @property
 def tests_subdir(self):
 return "tests"

This property must return a directory name that is relative to the testsuite
root: testcases are looked for in all of its subdirectories.

The next section describes how to go deeper and
change the testcase discovery process itself.

Changing the testcase naming scheme

Testsuite require unique names for all testcases. These name must be valid
filenames: no directory separator or special character such as : are
allowed.

By default, this name is computed from the name of the testcase directory,
relative to the tests subdirectory: directory separators are just replaced with
__ (two underscores). For instance, the testcase a/b-c/d is assigned
the a__b-c__d name.

Changing the naming scheme is as easy as overriding the test_name method,
which takes the name of the test directory and must return the test name,
conforming to the constraints described above:

class MyTestsuite(Testsuite):
 def test_name(self, test_dir):
 return custom_computation(test_dir)

e3.testsuite.testcase_finder: Control testcase discovery

In Core concepts, the default format for testcases is described as: any
directory that contains a test.yaml file. This section shows the mechanisms
to implement different formats.

Internally, the testsuite creates testcases from a list of
e3.testsuite.testcase_finder.ParsedTest instances: precisely one testcase
per ParsedTest object. This class is just a holder for the information
required to create a testcase, it contains the following attributes:

	test_name

	Name for this testcase, generally computed from test_dir using
Testsuite.test_name (see Changing the testcase naming scheme). Only one
testcase can have a specific name, or put differently: test names are
unique.

	driver_cls

	TestDriver subclass to instantiate for this testcase. When left to
None, the testsuite will use the default driver (if available).

	test_env

	Dictionary for the test environment.

	test_dir

	Name of the directory that contains the testcase.

	test_matcher

	Optional “matching name”, for filtering purposes, i.e. to run the testsuite
on a subset of tests. See below.

The next piece of code, responsible to create ParsedTest instances, is the
e3.testsuite.testcase_finder.TestFinder interface. This API is very simple:
TestFinder objects must support a probe(testsuite, dirpath, dirnames,
filenames) method, which is called for each directory that is a candidate to
be a testcase. The semantics for probe arguments are:

	testsuite

	Testsuite instance that is looking for testcases.

	dirpath

	Absolute name for the candidate directory to probe.

	dirnames

	Base names for dirpath subdirectories.

	filenames

	Basenames for files in dirpath.

When called, TestFinder.probe overriding methods are supposed to look at
dirpath, dirnames and filenames to determine whether this directory
contains testcases. It must return a list of ParsedTest instances: each one
will later be used to instantiate a TestDriver subclass for this testcase.

Note

For backwards compatibility, probe methods can return None instead
of an empty list when there is no testcase, and can return directly a
ParsedTest instance instead of a list of one element when the probed
directory contains exactly one testcase.

The default TestFinder instance that testsuites use come from the
e3.testsuite.testcase_finder.YAMLTestFinder class. Its probe method is very
simple: consider there is a testcase iff there is test.yaml is present in
filenames. In that case, parse its YAML content, use the result as the test
environment and look for a driver environment entry to fetch the
corresponding test driver.

The Testsuite.get_test_list internal method is the one that takes care of
running the search for tests in the appropriate directories: in the testsuite
root directory, or in directories passed in argument to the testsuite, and
delegates the actual “testcase decoding” to TestFinder instances.

Testsuites that need custom TestFinder instances only have to override the
test_finders property/class method in Testsuite subclasses, to return,
as one would probably expect, the list of test finders that will probe
candidate directories. The default implementation is eloquent:

@property
def test_finders(self):
 return [YAMLTestFinder()]

Note that when there are multiple test finders, they are used in the same order
as in the returned list: the first one that returns a ParsedTest “wins”,
and the directory is ignored if all test finders returned None.

The special case of directories with multiple tests

To keep reasonable performance when running a subset of testcases (i.e. when
passing the sublist positional command line argument), the
Testsuite.get_test_list method does not even try to call test finders on
directories that don’t match a requested sublist. For instance, with the given
tree of tests:

tests/
 bar/
 x.txt
 y.txt
 foo/
 a.txt
 b.txt
 c.txt

The following testsuite run:

./testsuite.py tests/bar/

will call the TestFinder.probe method only on the tests/bar/ directory
(and ignores tests/foo/).

This is fine if each testcase has a dedicated directory, which is the
recommended strategy to encode tests. However, if indvidual tests are actually
encoded as single files (for instance *.txt files in the example above,
which can happen with legacy testsuites), then the filtering of tests to run
can work in unfriendly ways:

./testsuite.py a.txt

will run no testcase: no directory matches a.txt, so the testsuite will
never call TestFinder.probe, and thus the testsuite will find no test.

In order to handle such cases, and thus force the matching machinery to
consider filenames (possibly at the expanse of performance), you need to:

	override the TestFinder.test_dedicated_directory property to return
False (it returns True by default);

	make its probe method pass ParsedTest’s test_matcher constructor
argument a string to be matched against sublists.

To continue with the previous example, let’s write a test finder that creates a
testcase for every *.txt file in the test tree, using the
TextFileDriver driver class:

class TextFileTestFinder(TestFinder):
 @property
 def test_dedicated_directory(self):
 # We create one testcase per text file. There can be multiple text
 # files in a single directory, ergo tests are not guaranteed to have
 # dedicated test directories.
 return False

 def probe(self, testsuite, dirpath, dirnames, filenames):
 # Create one test per "*.txt" file
 return [
 ParsedTest(
 # Strip the ".txt" extension for the test name
 test_name=testsuite.test_name(
 os.path.join(dirpath, f[:-4])
),
 driver_cls=TextFileDriver,
 test_env={},
 test_dir=dirpath,
 # Preserve the ".txt" extension so that it matches "a.txt"
 test_matcher=os.path.join(dirpath, f),
)
 for f in filenames:
 if not f.endswith(".txt")
]

Thanks to this test finder:

Run tests/bar/x.txt and tests/bar/y.txt
./testsuite tests/bar

Only run tests/bar/x.txt
./testsuite x.txt

Compatibility for AdaCore’s legacy testsuites

Although all the default behaviors in e3.testsuite presented in this
documentation should be fine for most new projects, it is not realistic to
require existing big testsuites to migrate to them. A lot of testsuites at
AdaCore use similar formalisms (atomic testcases, dedicated test directories,
…), but different formats: no test.yaml file, custom files for test
execution control, etc.

These testsuites contain a huge number of testcases, and thus it is a better
investment of time to introduce compatible settings in testsuite scripts rather
than reformat all testcases. This section presents compatibility helpers for
legacy AdaCore testsuites.

Test finder

The e3.testsuite.testcase_finder.AdaCoreLegacyTestFinder class can act as a
drop-in test finder for legacy AdaCore testsuites: all directories whose name
matches a TN (Ticket Number), i.e. matching the
[0-9A-Z]{2}[0-9]{2}-[A-Z0-9]{3} regular expression, are considered as
containing a testcase. Legacy AdaCore testsuites have only one driver, so this
test finder always use the same driver. For instance:

@property
def test_finders(self):
 # This will create a testcase for all directories whose name matches a
 # TN, using the MyDriver test driver.
 return [AdaCoreLegacyTestFinder(MyDriver)]

Test control

AdaCore legacy testsuites rely on a custom file format to lead testcase
execution control: test.opt files.

Similarly to the YAML-based control descriptions,
this format provides a declarative formalism to describe settings depending on
the environment, and more precisely on a set of discriminants: simple case
insensitive names for environment specificities. For instance: linux on a
Linux system, windows on a Windows one, x86 on Intel 32 bits
architecture, vxworks when targetting a VxWorks is involved, etc.

A parser for such files is included in e3.testsuite (see the
optfileparser module), and most importantly, a TestControlCreator
subclass binds it to the rest of the testsuite framework:
AdaCoreLegacyTestControlCreator, from the e3.testsuite.control module.
Its constructor requires the list of discriminants used to selectively evaluate
test.opt directives.

This file format not only controls test execution with its DEAD, XFAIL
and SKIP commands: it also allows to control the name of the script file to
run (CMD command), the name of the output baseline file (OUT), the time
limit for the script (RLIMIT), etc. For this reason,
AdaCoreLegacyTestControlCreator works best with the AdaCore legacy test
driver: see the next section.

Test driver

All legacy AdaCore testsuites use actual/expected test output comparisons to
determine if a test passes, so the reference test driver for them derives from
DiffTestDriver: e3.testsuite.driver.adacore.AdaCoreLegacyTestDriver.
This driver is coupled with a custom test execution control mechanism:
test.opt files (see the previous section), and thus overrides the
test_control_creator property accordingly.

This driver has two requirements for Testsuite subclasses using it:

	Put a process environment (string dictionary) for subprocesses in
self.env.test_environ. By default they can just put a copy of the
testsuite’s own environment: dict(os.environ).

	Put the list of discriminants (list of strings) in self.env.discs.
For the latter, starting from the result of the
e3.env.AbstractEnv.discriminants property can help, as it computes
standard discriminants based on the current host/build/target platforms.
Testsuites can then add more discriminants as needed.

For instance, imagine a testsuite that wants standard dircriminants plus the
valgrind discriminant if the --valgrind command-line option is passed
to the testsuite:

class MyTestsuite(Testsuite):
 def add_options(self, parser):
 parser.add_argument("--valgrind", action="store_true",
 help="Run tests under Valgrind")

 def set_up(self):
 super(MyTestsuite, self).set_up()
 self.env.test_environ = dict(os.environ)
 self.env.discs = self.env.discriminants
 if self.env.options.valgrind:
 self.env.discs.append("valgrind")

There is little point describing precisely the convoluted behavior for this
driver, so we will stick here to a summary, with a few pointers to go further:

	All testcases must provide a script to run. Depending on testsuite defaults
(AdaCoreLegacyTestControlCreator.default_script property) and the content
of each test.opt testcase file, this script can be a Windows batch script
(*.cmd), a Bourne-compatible shell script (*.sh) or a Python script
(*.py).

	It is the output of this script that is compared against the output baseline.
To hide environment-specific differences, output refiners turn backslashes
into forward slashes, remove .exe extensions and also remove occurences
of the working directory.

	On Unix systems, this driver has a very crude conversion of Windows batch
script to Bourne-compatible scripts: text substitution remove some .exe
extensions, replaces %VAR% environment variable references with $VAR,
etc. See AdaCoreLegacyTestDriver.get_script_command_line. Note that
subclasses can override this method to automatically generate a test script.

Curious readers are invited to read the sources to know the details: doing so
is necessary anyway to override specific behaviors so that this driver fits the
precise need of some testsuite. Hopefully, this documentation and inline
comments have made this process easier.

Multiprocessing: leveraging many cores

In order to take advantage of multiple cores on the machine running a
testsuite, e3.testsuite can run several tests in parallel. By default, it
uses Python threads to achieve this, which is very simple to use both for the
implementation of e3.testsuite itself, but also for testsuite implementors.
It is also usually more efficient than using separate processes.

However there is a disadvantage to this, at least with the most common Python
implementation (CPython): beyond some level of parallelism, the contention on
CPython’s GIL is too high to benefit from more processors. When we reach this
level, it is more interesting to use multiple processes to cancel the GIL
contention.

To work around this CPython caveat, e3.testsuite provides a non-default way
to run tests in separate processes and avoid multithreading completely, which
removes GIL contention and thus allows testsuites to run faster with many
cores.

Limitations

Compared to the multithreading model, running tests in separate processes adds
several constraints on the implementation of test drivers:

	First, all code involved in test driver execution (TestDriver subclasses,
and all the code called by them) must be importable from subprocesses:
defined in a Python module, during its initialization.

Note that this means that test drivers must not be defined in the
__main__ module, i.e. not in the Python executable script that runs the
testsuite, but in separate modules. This is probably the most common gotcha:
the meaning of __main__ is different between the testsuite main script
(for instance run_testsuite.py) and the internal script that will only
run the test driver (e3-run-test-fragment, built in e3.testsuite).

	Test environments and results (i.e. all data exchanged between the testsuite
main and the test drivers) must be compatible with Python’s standard pickle
module [https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled].

There are two additional limitations that affect only users of the low
level test driver API:

	Return value propagation between tests is disabled: the previous_values
argument in the fragment callback is always the empty dict. Conversely, the
fragment callback return values are always ignored.

	Test driver instances are not shared between testsuite mains (when
add_test is invoked) and each fragment: all live in separate processes
and the test driver classes are re-instantiated in each process.

Enabling multiprocessing

The first thing to do is to check that your testsuite works despite the
limitations described above. The most simple way to check this is to pass the
--force-multiprocessing command line flag to the testsuite. As its name
implies, it forces the use of separate processes to run test fragments (no
matter the level of parallelism).

Once this works, in order to communicate to e3.testsuite that it can
automatically enable multiprocessing (this is done only when the parallelism
level is considered high enough for this strategy to run faster), you have to
override the Testsuite.multiprocessing_supported property so that it
returns True (it returns False by default).

Advanced control of multiprocessing

Some testsuites may have test driver code that does not work in multithreading
contexts (use of global variables, environment variables, and the like). For
such testsuites, multiprocessing is not necessarily useful for performance, but
is actually needed for correct execution.

These testsuites can override the Testsuite.compute_use_multiprocessing
method to override the default automatic behavior (using multiprocessing
beyond some CPU cores threshold), and always enable it. Note that this will
make the --force-multiprocessing command line option useless.

Note that this possibility is a workaround for test driver code architectural
issues, and should not be considered as a proper way to deal with parallelism.

Index

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 e3-testsuite: User’s Manual

 		
 Core concepts

 		
 Testsuite organization

 		
 Test results

 		
 Test drivers

 		
 Tutorial

 		
 Basic setup

 		
 Creating a test driver

 		
 Writing tests

 		
 Commonly used testsuite arguments

 		
 Test execution control

 		
 e3.testsuite.result: Create test results

 		
 TestResult

 		
 TestStatus

 		
 Log

 		
 FailureReason

 		
 e3.testsuite.driver: Core test driver API

 		
 Basic API

 		
 Test/working directories

 		
 Test fragments

 		
 Creating test drivers

 		
 Test fragment abortion

 		
 Test fragment slot

 		
 Inter-test dependencies

 		
 e3.testsuite.driver.classic: Common test driver facilities

 		
 Working directory management

 		
 Output encodings

 		
 Spawning subprocesses

 		
 Set up/analyze/tear down

 		
 Metadata-based execution control

 		
 Exception-based execution control

 		
 Colors

 		
 Test fragment slot

 		
 e3.testsuite.driver.diff: Test driver for actual/expected outputs

 		
 Basic API

 		
 Output encodings

 		
 Handling output variations

 		
 Regexp-based matching

 		
 Output refining

 		
 Alternative baselines

 		
 Automatic baseline rewriting

 		
 e3.testsuite.control: Control test execution

 		
 Basic API

 		
 YAMLTestControlCreator

 		
 e3.testsuite: Testsuite API

 		
 Test drivers

 		
 Testsuite environment

 		
 Command-line options

 		
 Set up/tear down

 		
 Overriding tests subdirectory

 		
 Changing the testcase naming scheme

 		
 e3.testsuite.testcase_finder: Control testcase discovery

 		
 The special case of directories with multiple tests

 		
 Compatibility for AdaCore’s legacy testsuites

 		
 Test finder

 		
 Test control

 		
 Test driver

 		
 Multiprocessing: leveraging many cores

 		
 Limitations

 		
 Enabling multiprocessing

 		
 Advanced control of multiprocessing

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

